Differential expression and properties of starch branching enzyme isoforms in developing wheat endosperm.

نویسندگان

  • M K Morell
  • A Blennow
  • B Kosar-Hashemi
  • M S Samuel
چکیده

Three forms of starch branching enzyme (BE) from developing hexaploid wheat (Triticum aestivum) endosperm have been partially purified and characterized. Immunological cross-reactivities indicate that two forms (WBE-IAD, 88 kD, and WBE-IB, 87 kD) are related to the maize BE I class and that WBE-II (88 kD) is related to maize BE II. Comparison of the N-terminal sequences from WBE-IAD and WBE-II with maize and rice BEs confirms these relationships. Evidence is presented from the analysis of nullisomic-tetrasomic wheat lines demonstrating that WBE-IB is located on chromosome 7B and that the WBE-IAD fraction contains polypeptides that are encoded on chromosomes 7A and 7D. The wheat endosperm BE classes are differentially expressed during endosperm development. WBE-II is expressed at a constant level throughout mid and late endosperm development. In contrast, WBE-IAD and WBE-IB are preferentially expressed in late endosperm development. Differences are also observed in the kinetic characteristics of the enzymes. The WBE-I isoforms have a 2- to 5-fold higher affinity for amylose than does WBE-II, and the WBE-I isoforms are activated up to 5-fold by phosphorylated intermediates and inorganic phosphate, whereas WBE-II is activated only 50%. The potential implications of this activation of BE I for starch biosynthesis are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats.

Foods high in resistant starch have the potential to improve human health and lower the risk of serious noninfectious diseases. RNA interference was used to down-regulate the two different isoforms of starch-branching enzyme (SBE) II (SBEIIa and SBEIIb) in wheat endosperm to raise its amylose content. Suppression of SBEIIb expression alone had no effect on amylose content; however, suppression ...

متن کامل

Control of starch branching in barley defined through differential RNAi suppression of starch branching enzyme IIa and IIb

The roles of starch branching enzyme (SBE, EC 2.4.1.18) IIa and SBE IIb in defining the structure of amylose and amylopectin in barley (Hordeum vulgare) endosperm were examined. Barley lines with low expression of SBE IIa or SBE IIb, and with the low expression of both isoforms were generated through RNA-mediated silencing technology. These lines enabled the study of the role of each of these i...

متن کامل

Starch-Branching Enzymes Sbe1 and Sbe2 From Wheat (Triticum aestivum cv. Cheyenne): Molecular Characterization, Developmental Expression, and Homoeologue Assignment by Differential PCR*

Wheat starch-branching enzymes McCue et al. Abstract. Starch is t e mai component of the wheat kernel, and wheat flour is used for hundreds of food and nonfood products. We are exploring ways to improve wheat quality and to develop new uses for wheat based on altered starch characteristics. To understand the molecular basis for variations in the physical and chemical properties of starch, we ex...

متن کامل

Starch-branching enzymes preferentially associated with A-type starch granules in wheat endosperm.

Two starch granule-bound proteins (SGP), SGP-140 and SGP-145, were preferentially associated with A-type starch granules (>10 microm) in developing and mature wheat (Triticum aestivum) kernels. Immunoblotting and N-terminal sequencing suggested that the two proteins were different variants of SBEIc, a 152-kD isoform of wheat starch-branching enzyme. Both SGP-140 and SGP-145 were localized to th...

متن کامل

Transcriptomic Analysis of Starch Biosynthesis in the Developing Grain of Hexaploid Wheat

The expression of genes involved in starch synthesis in wheat was analyzed together with the accumulation profiles of soluble sugars, starch, protein, and starch granule distribution in developing caryopses obtained from the same biological materials used for profiling of gene expression using DNA microarrays. Multiple expression patterns were detected for the different starch biosynthetic gene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 113 1  شماره 

صفحات  -

تاریخ انتشار 1997